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Boundary integral method for quantum billiards in a constant magnetic field
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We derive a boundary integral equation to compute the eigenvalues of two-dimensional billiards subjected
to a magnetic field. The integral requires the Green’s function of the boundary-free problem with the magnetic
field pointing in the opposite direction. This Green'’s function is computed for the case of a constant magnetic
field perpendicular to the billiard and some applications are discussed. The elliptical billiard is then studied
numerically as an example of a nontrivial applicatipB1063-651X96)05612-7

PACS numbdps): 05.45+hb, 03.65-w

I. INTRODUCTION In a recent papdrl5], a method for computing the eigen-
values and eigenfunctions of billiards in a constant magnetic
field was developed. The basic idea of this method is to write
given boundary conditions fap. The history and a survey of the wave _functi_on as a linear combination of th_e _bqundary-
these techniaues can be tracéd from REEs2]. One of the free solutions, including those that diverge at infinity. The
q ' solution of the billiard problem is then obtained by imposing

most important applications of this method is in the quantumy ot the correct combination goes to zero at the boundary.
mechanics of chaotic billiards, where it has been largely use lthough efficient, this procedure requires an expansion of

to compute eigenvalues of Scldmger§ equatior{3]. The the wave function valid in the whole space, not only at the
definition of aquantum surface of sectidsty Bogomolny{5] boundary

and its application to a one-dimensional Sturm-Liouville The méin result of this paper is a method for the compu-
problem [6] are examplgs of the versatlllty_of b(_)undary tation of eigenvalues of billiards in a magnetic field. Using

methods to sol\{e sy quantum—m_echanlcal_e|genvalg%reen,s identity, we are capable of generalizing the usual
problems. The idea of these methods is to obtain a rna'[”Xboundary integral determinant obtained from Helmholtz's

dgpendmg only on the shape Qf the boundary, whose dEte«E'quation. The free field case makes use of the Green’s func-
minant has zeros at the right eigenvalues. tion

In the past few years there has been an increasing interes
in the behavior of confined particles subjected to a uniform
magnetic field 7—14]. Billiards have been used successfully
in several situations to model such confining potentials. In
this case, Schudinger’s equation readsrn=e=c=1)

Boundary integral methods constitute a powerful tool in
the solution of Helmholtz’'s equationV€+k?) =0 with

, 2i 1 .
G(r,r ;E)=72—HO (k[r=r"]). 2)

The Hamiltonian for a particle subject to a constant magnetic
1 ) field may be cast into a harmonic-oscillator probléfr],
E(_'ﬁV_A) y=Ey, D allowing us to obtain the corresponding Green's function.
This is done in Sec. Il.

This paper is organized as follows. In Sec. Il we derive
with B=V XA, and it cannot be reduced to Helmholtz's the boundary integral equation whose solution gives implic-
equation. itly the eigenvalues of a generic billiard in a magnetic field.

The computation of the eigenvalues and eigenfunctionsn Sec. Il we derive the Green’s function for the case of a
are more elaborate and only in very simple situations it carconstant magnetic field perpendicular to the billiard and in
be performed by a direct diagonalization of the HamiltonianSec. IV we derive an alternative quantization condition for
operator. This is because an appropriate set of basis states fimooth boundaries using the Fourier expansion of the
such diagonalization should satisfy the billiard boundaryGreen’'s function. We then apply our method to compute
conditions. If the billiard is integrable at zero magnetic field numerically the eigenvalues of the ellipse billiard, which is
and its wave functions can be computed analyticéfyr ~ nonintegrable for nonzero magnetic field.
example, square and circular billiajdthe diagonalization
scheme with these wave functions as a basis works fairly
well [15,16. In a general case such bases sets are not avail-
able beforehand and have to be obtained numerically. This The Schidinger equation for a particle moving inside a

introduces errors and makes the whole process very expegilliard of domain 3 and boundaryB subjected to a mag-

Il. THE BOUNDARY INTEGRAL EQUATION

sive computationally. netic fieldB can be written in the form
*Present address: School of Mathematics, University Walk, Bris- V2—2i—A- V 4+ K2— A2/#2 W(r)=0 3)
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wherek?=2E/#? and the Coulomb gaugeV(- A=0) is as- ablel running from 0 toL, the billiard perimeter, and we

sumed. The wave functiogs should satisfy the boundary write the normal derivative of;, V- ndl as a Fourier series

condition ¢(r)=0 forr on dB. ondBs:

__We now consider the equation for the Green’s function .
. : . i P

G(r,ro) of a particle subjected to the magnetic fietd: Vw-ndIE&—lz= 2 aexp 2mikl/L).
k=—o

[
V24 2%A~ V+k2—A?%/52

—_— T
G(r.ro)=- a a(r=ro). The Green’s function can be similarly Fourier analyzed since
(4)  bothr andr, are needed only along the boundary in E:

[’

Multiplying Eqg. (4) on the left by, subtracting the result — — _
from Eq.(3) multiplied on the left byG, and integrating over G(r.ro)= n’nozz_w Gnoexf 27i (Nolo—nD/L].
the billiard areal3 we get
oi Inserting these last two expressions into EqQ. and doing
—_— —_ I —_— - . . .
f (GV2y— yV2G)d?r — ﬁf (GA-V y+ yA- V&) d2r the integral ovet yields the equation
B B -
81 > exp2minglo/L)
=~ ¥(ro). (5)

whose nontrivial solutions exist only if
The first integral can be reduced to an integral over the bil-

liard boundary by using Green’s identity as usual. The sec- deﬂG_nn0|=0, (8
ond integral can be rewritten as

oo

2 G_nn a,|=0,
n e o

which is a quantization condition.

2i [ — — ., 2 —
h fB(GA Vit yA-vVG)dT h fBA (VGydr Ill. GREEN'S FUNCTION

2i — To apply the method developed in the preceding section,
:gJ'BV'(AGI#)d r, we have to obtain the Green’s function for the problem
whose boundary condition is not that of the billiard. Follow-
ing the procedure of the field-free case, we choose to work
with the open problem, without boundaries. In the case of a
constant and uniform magnetic field applied in the direction

where we have used th&-A=0. We now use the Stoke
theorem in the form

IM L perpendicular to the plane of the billiard, this Green’s func-
f (———)dx dyzf (L dx+Mdy), tion can be easily obtained. The Hamiltonian is given by
(g=m=c=1)
with M IAXG_I/I andL= —AyG_(//. This completely reduces 1 5
Eq. (5) to a boundary integral equation H=3(p-A)" 9

— — 2i [ — 8 ; ; p, ;
GVu—o4VG)-Adl— _f Gu(A-Adl) = ro). Ch_oosmg the symmetrlc gauge=(Br/2)6, we may write
f(?B( b=yYve) h)as 4 ) h? ¥(ro) H in polar coordinates as

6
© w2 o 9 9 wr?
wherendl is the normal differential along the boundary. H=-5- ﬁ( r E) TR AN —th(y_g’ (10
For billiards with hard walls) vanishes at the boundary.
In this case, we choosg at the boundary and impose that wherew=B/2 is half of the cyclotronic frequency.
the Green'’s function satisfy boundary conditiasther than The Green'’s function satisfies the equation
those ofy. With these choices Ed6) yields
(E-=H)G(r,rg;E)=—475(r—ry). (12
LBGV g-ndl=0. (7)  This equation, however, does not spedBycompletely. In

the case of zero magnetic field, one imposes Gatkepre-
sents an outgoing wave whose amplitude goes to zero as
[r—ro| goes to infinity. In the present case such conditions
cannot be imposed 08, as we shall see below. We impose
instead thatG has to be compatible with the corresponding
Green’s function for zero magnetic fie]d8,4]:

This equation is identical in form to that obtained for the
field-free case[4]. The only difference is that here the
Green's function satisfies E@4) and is not just a Hankel
function like in the zero-field case. We shall compute this
Green'’s function in Sec. Ill.

Equation(7) can be easily transformed into a determinant 2im \/E
whose zeros give the correct eigenvalues of the billiard. To lim G(r,ro;E)= _2H61>(_|r_ro|), (12)
this end, we parametrize the boundary by a continuous vari- |B|—0 h h
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whereH" is the zeroth-order Hankel function of the first whose solution may be readily written in terms of the con-

kind.

fluent hypergeometri€cKummen function[17] (see the Ap-

The Green’s function singularity in two dimensions is pendiy

logarithmic, independent of the magnetic field, as one can
easily derive by noting that it has no angle dependence forG(R 0:E)= EZF
L 1 h

r—ro. Integrating(1l) in a circle around =r,, we obtain

4
IimG(r,rO;E)=—gzln|r—r0|. (13

r—rop

Conditions(12) and(13) are sufficient to determine uniquely
the solution of(11).

To solve (11), we may consider #rg, imposing after-
ward condition(13). Introducing the relative coordinates

R=r—ro, R=(X)Y), (14

we see that the momenta are unchand®gg: p,, Py=py,
while the Hamiltonian changes to

2

B
Px_ E(Y+y0)

1
H(Py,X,Py, )=

1 B 2
+§ Py+ E(X+XO)

where §q,Yo) =rg- Applying the gauge transformation
, B
A'(XY)=AXY) = 5 (Yo, ~%0,0)

=A-Vo, (15

where

B
P(X,Y)= 5 (Xyo=Y>o), (16)

the Hamiltonian may be written as

1
H(Py,X,Py,Y)= E(P—A')2.

To obtainG(r,ry;E) we can therefore solvéll) for ry=0
first and then make a gauge transform on the solution

17

We now make thead hocassumption that the whole de-
pendence ofs on the angled is in the phase

G(raroiE):G(I’—ro,O;E)ei‘P("ro)/ﬁ,

G(r—ro,0,E)=G(|r—rg|,0;E). (19

Eb?\ ,., [1 EbB? R?
- — - | aR%/2b - — e
2+2ﬁ2)e Vgt gzl bz)'
(19
where
b= i/l | (20)

andI is the Euler gamma functiofl9].

From[20], Eq. 6.9(17) (p. 266 provides the limit of zero
magnetic field(13), while the divergence foR—0 is ob-
tained from Eq. 6.77) (p. 259, and Eq. 6.85) (p. 262 of
the same reference. Combining E¢$9) and (17), we can
write the Green'’s function for the Hamiltonia®) in two
dimensions

G(r,ro;E)
B 2F 1+Eb2 [r—ro|? iB oo
= w2l |51 252 gpz T Brresing— o)
\Pl Eb®  |r—rgl?
X §+W’1’_T. (22

Fourier analysis

We now present a derivation of this solution based on the
decomposition of theS function in (11) in a Fourier series.
The interest is twofold, first to give a direct demonstration of
the ad hochypothesig18) and second to obtain a sum rule
for the Kummer function.

Writing the solution of(11) as

©

G(r,rg;E)= >

m=—®

1 .
ZGm(r,ro;E)e'”‘“” %),

a term by term comparison with th&function Fourier ex-
pansion furnishes

O L BTG
2 ar  ardar 2z TMhe——5— |G
T S —ro) (22
=——=3(r—ryp).
NI °

Again, forr #rg, the solutionsG,,, are given in terms of the
Kummer functiongsee the Appendix The requirement that

Thus the problem is reduced to a symmetric harmonic oscilG,, remains finite at the origin and the discontinuity of its
lator in two dimensions, with zero angular momentum,derivative imply that

Am(r0)<I>(am,|m|+1;—

Gm(rarO;E):

Bm(ro)\lf(am,|m|+1;—

2 |m|
r r .
_> (5) gf ?12b? if r<ry

r2\(r\Im 2002
F)(B) er 12b if r>I’0,

(23
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where 27 R2 R\ Iml
FilR1=3 J d)( | M +1,— F) eRZ’bZ(E)
[m|+msgnw)+1 0

M= 252 2 ' % el(mtog g
with sgn() the signal ofx. R2 , ,/R\m
From the symmetry of the left-hand side 22) with F(Z)[R]__J (am,|m|+1,— —2) eR/P (—)
respect to the exchange pfandr it follows that b b
(2 Imi x e (m*igg
An(ro)=c \If(a |m|+1'——%>(r—o) &0/’
" mem " b%\b ’ such that
2 [m| 2 [ml|
r r R R
Bin(Fo)=Cr®| am,|m|+1;— — || - €62, ®| ap,|m|+1,— — | R —
b=/\ b b b
wherec,, is a constant determined by the discontinuity of the =S FW[R]e- im0
Green’s function atr=rg. Integrating (22) from rqo— —~ . m, ’
to ro+e€ and letting e—0, we obtainc, in terms of
the  Wronskian  of W(apy,|m|+1;-r%b% and R?\ , ,(R\m
®(apy,,|m|+1;—r2/b?) [20]: ‘If(am,lm|+1,— Ez>eR fo (5)
()™ 47T () , -
Cm= (=D 2 [+ 1) =2 Fij[Rle” ™

Therefore, the final form of the Green’s function in a Fourier

RS At the boundary, we may also expand
series is given by

2 & T(a) v R2+ ) "
G(riroiE)=32 ; 1)mr(|m—|$1) v E
2 Using the Green’s function Ed24), the boundary inte-
X W am,|m|+1;—b—§ gral yields
r2< 2 2 B, 2 M( 1)mF(l)[R]F(2)-[R]*
X @ am,|m|+l;—F (Jm[+1) m kM
xe k=0

[m|
rro 2 2 2 : _
X(F) eI, 24 @ RT* = E (@) i

where we have defineéy j[R]* =F;";_,n[R]. By impos-
ing that the wave functions do not vanish identically inside
the billiard, the above equation always has a solution, pro-

vided theF!) coefficients obey condition

It is easy to see from E@24) thatG(r,0;E) depends only on
r=|r|, proving our hypothesis i18). Moreover, it can be
equated td21) to give an addition theorem for the Kummer
function ¥ (c—a,c; —x) for c=1. del{F%)k[R]}=0. (25)

IV. APPLICATIONS Equation(8) is only a special case of this more general con-

In this section, we develop an alternative quant|zat|ondltlon . - o "
We can derive a similar quantization condition for the

condition to Eq.(8) by Fourier expanding the relevant func- .
. . . : 2 case of two boundaries: an external boundaff,
tions directly in terms ob instead of doing it in terms of the

=((R,(6),0) and an internal onéB;=(R;(6), ). Assum-
boundary coordinate This expression turns out to be more .

ing that the origin does not lie inside the billiard, the func-

useful than Eq.(8) since the Fourier expansion of the tions ¥ must appear explicitly in the quantization condition.

Green’s function is known in the angular variatsle A nu- . )
; S o - S . Following the same steps of the above reasoning, we use the
merical application for the elliptical billiard, which is nonin- expansion

tegrable for nonzero magnetic field, is then presented.

dR,\* .
A. Quantization condition Vi¢-n Rﬁ-f—( dan) => Bje '’
|
If the points on the billiard boundary can be written in
polar coordinates a¢R(#),6) for a differentiable function whereR,=R;,R, and the indexn on B, is to denote the
R(#), then the integral in Eq(7) can be performed in the dependence o, on R,(#). The final result, after perform-
following way. Define the “Fourier coefficients’ F(l)[R] ing the angular integration and imposing a nonvanishing

andF[R] by condition on the wave functions inside the billiard, is a set of
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linear equations in thd3,, variables that has a nontrivial TABLE |. First 20 eigenvalues of the elliptical billiard for

solution if the following condition holds: €=0.8 andB=25.0 as computed with the present metticolumn
2) and with the method of Ref15] (column 3. The fourth column
Fﬁnly)j[Rl] F%}[Rz] shows the relative error.
€ FAIR,] FZ[R,] - 26
m,jLT*1 m,jLT2 n Enx E, Error

It is easy to see that in the case of a circular boundary Ecqq 12.50384 12.50358 2.0810° 5

(25) gives the correct energy levels, which are directly re-, 12.63204 12.63155 3.8810°°

lated to the zeros ob (see Ref.[lS]). The concentric ring 3 13.46100 13.46186 6.3010°°

billiard (the circular billiard with a concentric hole inside 4 15.97053 15.97655 3 K704

also yields a simple equation for the energy levels, namelyg 21.02476 21.07952 2 6010-3

2% |m| +m+1 6 29.17016 29.56061 1.3’410:2

mn=pZ| @ 5| n 7 37.76935 37.76905 7.9v41077

8 39.74313 39.74311 5.0310

with a,, , being thenth solution of 9 40.71738 42.61795 4.6710 2

' 10 45.12332 45.12327 1.x110°7

R? 11 54.55055 54.55006 8.89810° 7

q>< [ M[+1,~ F) 12 55.84953 57.55588 3.86L0 2

d)( | m+1,— F) - RZ 13 62.73663 62.73655 1.2810°©

\Ir( am ,|m| +1,— Bf) 14 65.61804 65.61764 6.%010° 6

15 68.08328 68.07920 5.8910° 5

1 16 73.50343 73.50327 2.1810°°

X\ am,|m[+1,- g) =0. (28) 17 74.65306 80.49373 7.8210°2

18 85.50246 85.52483 2.620 4

_ o o 19 86.65280 88.13405 1.X110°?

B. Numerical results for the elliptical billiard 20 90.70241 90.70225 1.%6.0°8

For a numerical test of our method we have calculated the
eigenvalues of the elliptical billiard for two values of the

eccentricity e. The ellipse major and minor axis are to be modified in a way similar to the ideas presented in Ref.
(1—€*) " and (1~ €%, respectively(so that the billiard  [2]. It is not clear by now whether these modifications can be
area isw), and we have fixed =m=q=1. easily performed or how the outcome will compare with the
Thanks to the symmetry properties of the ellipse, the comsimple procedure of Ref15]. We plan to discuss these ques-
plex matrix F(*) can be rewritten as a real matrix. In fact, it tions in a future work.
is easy to see that any billiard whose boundary has a reflec-
tion symmetry plus and inversion symmetry allows for a real ACKNOWLEDGMENTS
F() if the integration limits are chosen appropriately. More-
over, it turns out to be numerically convenient to renormalize  This paper was partly supported by CNPq, Fapesp, and
the hypergeometric function® and ¥ in order to keep the Finep.
determinant bounded when the conditi@b) is imposed.
We have computed matricés?) of size 61, which have
guaranteed a precision of at least 8 digits in the eigenvalues APPENDIX: DERIVATION OF THE CONFLUENT
up to an energy around 150 and magnetic fgldround 30. HYPERGEOMETRIC EQUATION

To check the numerical precision of the energy levels we o depart from the homogeneous case of E29), r

have compared the results using different matrix sizes. Atz ' o, generaim. It reduces to the independent case for
B=30, for instance, a comparison between matrix dimen;,—

sions of 41 and 61 reveals that the first 40 eigenvalues agree
with at least 8 digits.

Next, in Table | we compare the resultsBat 25 between A2 d2 A2 d m2K2 w?r?
the present method and that developed in RES]. We re- Bt S gt orar 2z TMhe— —— |G-
mark that the latter procedure failed to compute the eigen- (A1)

values at magnetic fields larger than 25, although it agreed
very well with the results of this paper for low fields. As the
field increases, however, the calculations with the method oSupposingG,, is of the form
Ref.[15] become unstable and lose precision, as can be seen
from Table |. The present approach not only works better for
larger fields but also allows for the calculation of a much B P | r?
larger number of eigenvalues. We have computed more than Grn(1) =Fm(r</b%) b exp— 2p2)
200 levels at several field values with very good acuracy.
As a final comment we remark that we have not consid-
ered here billiards with corners. In this case the method hase get the following equation fdF ,,:

(A2)
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d?F, dFn,
ZEQ—+(|m|+1—Z)E

—msgnw)+|m/+1 Eb?
2 2h?

Fn=0, (A3)

where z=r?/b?. Equation(A3) is one of the forms of the
confluent hypergeometric equatifef. Eq. 6.3(1) p. 252, of

M. L. TIAGO, T. O. de CARVALHO, AND M. A. M. de AGUIAR

55

[20]]. The solutions we have chosen are of the form
e“¥(c—a,c;—z) ande*d(c—a,c;—2z), where

c=|m|+1, (A4)

—msgnw)+|m+1 Eb?
a=
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